Asked by

Franklin Joseph
on Oct 11, 2024

verifed

Verified

The table below gives information concerning the gasoline mileage for random samples of trucks of two different types.Find a 95% confidence interval for the difference in the means μX\mu_\mathrm { X }μX - μY\mu_YμY .  Brand X Brand Y  Number of Trucks 5050 Mean mileage 20.424.9 Standard Deviation 2.31.8\begin{array} { l | c c } & \text { Brand } \mathrm { X } & \text { Brand Y } \\\hline \text { Number of Trucks } & 50 & 50 \\\text { Mean mileage } & 20.4 & 24.9 \\\text { Standard Deviation } & 2.3 & 1.8\end{array} Number of Trucks  Mean mileage  Standard Deviation  Brand X5020.42.3 Brand Y 5024.91.8

A) (3.68,5.32)
B) (-5,-4)
C) (4,5)
D) (-5.32,-3.68)
E) (20.4,24.9)

Gasoline Mileage

A measure of how many miles a vehicle can travel on a gallon of gasoline.

Mean Mileage

The average distance a vehicle can travel per unit of fuel.

Standard Deviation

A measure of the amount of variation or dispersion of a set of values, indicating how much the values differ from the mean.

  • Grasp the concept of confidence intervals within the scenario of contrasting two population means.
verifed

Verified Answer

SB
shaniqua bowlegOct 11, 2024
Final Answer:
Get Full Answer