Asked by

Joyail Tokas
on Nov 04, 2024

verifed

Verified

Consider the following probability distribution for stocks A and B:  State  Probability  Return on Stock A  Return on Stock B 10.158%8%20.2013%7%30.1512%6%40.3014%9%50.2016%11%\begin{array}{cccc}\text { State } & \text { Probability } & \text { Return on Stock A } & \text { Return on Stock B } \\1 & 0.15 & 8 \% & 8 \% \\2 & 0.20 & 13\% & 7\% \\3 & 0.15 & 12\%& 6\% \\4 & 0.30 & 14\%& 9\% \\5 & 0.20 & 16\% & 11 \%\end{array} State 12345 Probability 0.150.200.150.300.20 Return on Stock A 8%13%12%14%16% Return on Stock B 8%7%6%9%11%
The standard deviations of stocks A and B are _____ and _____, respectively.

A) 1.56%; 1.99%
B) 2.45%; 1.66%
C) 3.22%; 2.01%
D) 1.54%; 1.11%

Standard Deviations

A statistical measure of the dispersion or variability in a data set, commonly used to quantify the risk associated with a particular investment.

Probability Distribution

A mathematical function that provides the probabilities of occurrence of different possible outcomes for an experiment.

  • Compute and elucidate the anticipated rate of return and variance for investment portfolios.
verifed

Verified Answer

DS
Destiny ScottNov 07, 2024
Final Answer:
Get Full Answer