Filters
Question type

Study Flashcards

The solubility of La(IO3) 3 in a 0.71 M KIO3 solution is 1.0 ×10-7 mol/L.Calculate Ksp for La(IO3) 3.


A) 7.1 × 10-8
B) 3.6 × 10-22
C) 3.6 × 10-1
D) 3.6 × 10-8
E) none of these

Correct Answer

verifed

verified

What is the hydroxide-ion concentration of a saturated solution of Ni(OH) 2? For Ni(OH) 2,Ksp = 2.0 × 10-15.


A) 2.8 × 10-3 M
B) 7.9 × 10-6 M
C) 1.0 × 10-7 M
D) 2.7 × 10-2 M
E) 1.6 × 10-5 M

Correct Answer

verifed

verified

Given the following equilibrium constants, ​ Zn(IO3) 2 Ksp = Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)   Zn(NH3) 42+ Kf = Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)   ​ Determine Kc for the dissolution of the sparingly soluble salt Zn(IO3) 2 in aqueous ammonia (shown below) . Zn(IO3) 2(s) + 4NH3(aq) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)   Zn(NH3) 42+(aq) + 2IO3-(aq)


A) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)
B) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)
C) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)
D) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)
E) Given the following equilibrium constants, ​ Zn(IO<sub>3</sub>) <sub>2</sub> K<sub>sp</sub> =   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+ </sup>K<sub>f </sub> =   ​ Determine K<sub>c</sub> for the dissolution of the sparingly soluble salt Zn(IO<sub>3</sub>) <sub>2</sub> in aqueous ammonia (shown below) . Zn(IO<sub>3</sub>) <sub>2</sub>(s) + 4NH<sub>3</sub>(aq)   Zn(NH<sub>3</sub>) <sub>4</sub><sup>2+</sup>(aq) + 2IO<sub>3</sub><sup>-</sup>(aq)  A)    B)    C)    D)    E)

Correct Answer

verifed

verified

What is the solubility product expression for Zn3(PO4) 2?


A) Ksp = [Zn32+][(PO43-) 2]
B) Ksp = [3Zn2+]3[2PO43-]2
C) Ksp = [Zn2+][2PO43-]
D) Ksp = [Zn3+]2[PO42-]3
E) Ksp = [Zn2+]3[PO43-]2

Correct Answer

verifed

verified

What is the maximum Sr2+ concentration possible in a solution that has a What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M sulfide-ion concentration without precipitating strontium sulfate? For SrSO4,Ksp = 2.5 × 10-7.


A) What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M
B) What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M
C) What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M
D) What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M
E) What is the maximum Sr<sup>2+</sup> concentration possible in a solution that has a   M sulfide-ion concentration without precipitating strontium sulfate? For SrSO<sub>4</sub>,K<sub>sp</sub> = 2.5 × 10<sup>-7</sup>. A)    M B)    M C)    M D)    M E)    M M

Correct Answer

verifed

verified

Suppose 50.00 mL of 2.0 × 10-6 M Fe(NO3) 3 is added to 50.00 mL of 2.0 ×10-4 M KIO3.Which of the following statements is true? For Fe(IO3) 3,Ksp = 1.0 × 10-14.


A) A precipitate forms because Qc > Ksp.
B) A precipitate forms because Qc < Ksp.
C) No precipitate forms because Qc < Ksp.
D) No precipitate forms because Qc = Ksp.
E) No precipitate forms because Qc > Ksp.

Correct Answer

verifed

verified

An aqueous solution of Ag(CN) 2− is made by combining 0.0100 moles AgNO3 with 1.00 mole NaCN and diluting to 1.000 L.What is the molar concentration of Ag+ in the solution? Ag+(aq) + 2CN-(aq) An aqueous solution of Ag(CN) <sub>2</sub>− is made by combining 0.0100 moles AgNO<sub>3</sub> with 1.00 mole NaCN and diluting to 1.000 L.What is the molar concentration of Ag<sup>+</sup> in the solution? Ag<sup>+</sup>(aq) + 2CN<sup>-</sup>(aq)   Ag(CN) <sub>2</sub><sup>-</sup>(aq) ; K<sub>f</sub> = 5.6 × 10<sup>18</sup> A) 1.9 × 10<sup>-21</sup> M B) 5.3 × 10<sup>20</sup> M C) 5.8 × 10<sup>16</sup> M D) 1.7 × 10<sup>-17</sup> M E) 0.010 MAg(CN) 2-(aq) ; Kf = 5.6 × 1018


A) 1.9 × 10-21 M
B) 5.3 × 1020 M
C) 5.8 × 1016 M
D) 1.7 × 10-17 M
E) 0.010 M

Correct Answer

verifed

verified

You have two salts,AgX and AgY,with very similar Ksp values.You know that Ka for HX is much greater than Ka for HY.Which statement will be true?


A) AgX and AgY are less soluble in acidic solution than in pure water.
B) AgX is more soluble in acidic solution.
C) AgX and AgY are equally soluble in acidic solution.
D) AgY is more soluble in acidic solution.
E) none of these

Correct Answer

verifed

verified

In which of the following solutions would CaC2O4 have the highest molar solubility?


A) 0.01 M Na2C2O4
B) 0.01 M NaCl
C) 0.01 M HCl
D) 0.01 M Ca(NO3) 2
E) 0.01 M NaHC2O4

Correct Answer

verifed

verified

What is the solubility product expression for La2(CO3) 3?


A) Ksp = [2La3+]2[3CO32-]3
B) Ksp = [La2+]2[CO32-]3
C) Ksp = [2La3+]2[CO32-]3
D) Ksp = [2La3+][3CO32-]
E) Ksp = [La3+]2[CO32-]3

Correct Answer

verifed

verified

How many moles of CaF2 will dissolve in 3.0 L of 0.041 M NaF solution? (Ksp for CaF2 = 4.0 × 10-11)


A) 3.3 × 10-10
B) 2.4 × 10-8
C) 7.1 × 10-8
D) 7.9 × 10-9
E) none of these

Correct Answer

verifed

verified

If 430 mL of 1 × 10-4 M Ca(NO3) 2 is mixed with 430 mL of 1 × 10-4 M NaF,what will occur? For CaF2,Ksp = 3.4 × 10-11.


A) No precipitate will form.
B) Sodium nitrate will precipitate.
C) Calcium nitrate will precipitate.
D) Calcium fluoride will precipitate.
E) Sodium fluoride will precipitate.

Correct Answer

verifed

verified

Which of the following salts has the lowest molar solubility?


A) SrCO3 (Ksp = 9.3 × 10-10)
B) MnS (Ksp = 2.5 × 10-10)
C) BaF2 (Ksp = 1 × 10-6)
D) BaSO4 (Ksp = 1.1 × 10-10)
E) AgCl (Ksp = 1.8 × 10-10)

Correct Answer

verifed

verified

In which of the following solutions would silver(I) phosphate,Ag3PO4,be least soluble?


A) 0.10 M Na3PO4
B) 0.10 M AgNO3
C) 0.10 M Na2HPO4
D) 0.10 M HNO3
E) 0.10 M NaH2PO4

Correct Answer

verifed

verified

The best explanation for the dissolution of ZnS in dilute HCl is that


A) the zinc ion is amphoteric.
B) the sulfide ion concentration is decreased by the formation of H2S.
C) the solubility product of ZnCl2 is less than that of ZnS.
D) the zinc ion concentration is decreased by the formation of a chloro complex.
E) the sulfide ion concentration is decreased by oxidation to sulfur.

Correct Answer

verifed

verified

Showing 101 - 115 of 115

Related Exams

Show Answer