Filters
Question type

Surplus is typically associated with which type of constraints?


A) ≤
B) ≥
C) =
D) ≠
E) ±

Correct Answer

verifed

verified

The Sensitivity Report typically analyses the impact of simultaneous changes in the objective function coefficients and right-hand side constraint values on the optimal solution.

Correct Answer

verifed

verified

Use this information,along with its associated Sensitivity Report,to answer the following questions. A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.  Product  Material 1 (lbs)  Material 2 (lbs.)  Labor (hours)  A324B142C5 none 3.5\begin{array} { | c | c | c | c | } \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } ) } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . ) } & \text { Labor (hours) } \\\hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\\hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\\hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\\hline\end{array} Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.  Formulation   Max 10 A+10 B+10C Subject to: 3 A+B+5C300 (constraint #1)  2 A+4 B400 (constraint #2)  4 A+2 B+3.5C200 (constraint #3)  C10 (constraint #4)  A,B,C0\begin{array}{l}\text { Formulation }\\\begin{array} { l l } \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\\text { Subject to: } & \\& 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1) } \\& 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2) } \\& 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3) } \\& \mathrm { C } \geq 10 \text { (constraint \#4) } \\& \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0\end{array}\end{array}  Use this information,along with its associated Sensitivity Report,to answer the following questions. A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.   \begin{array} { | c | c | c | c | }  \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } )  } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . )  } & \text { Labor (hours)  } \\ \hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\ \hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\ \hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\ \hline \end{array}   Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.   \begin{array}{l} \text { Formulation }\\ \begin{array} { l l }  \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\ \text { Subject to: } & \\ & 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1)  } \\ & 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2)  } \\ & 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3)  } \\ & \mathrm { C } \geq 10 \text { (constraint \#4)  } \\ & \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0 \end{array} \end{array}      -Suppose that we force the production of one unit of product A.The new objective function value will be A) $925 B) $915 C) $935 D) $900 E) Not enough information is provided. -Suppose that we force the production of one unit of product A.The new objective function value will be


A) $925
B) $915
C) $935
D) $900
E) Not enough information is provided.

Correct Answer

verifed

verified

Assume that the reduced cost of a decision variable is -$20 for a maximization problem.This implies that:


A) the objective function value will decrease by $20 if we do not produce any units of this product
B) the objective function value will not change if we produce an additional unit of this product
C) the objective function value will increase by $20 if we produce an additional unit of this product
D) the shadow price value will decrease by $20 if we produce an additional unit of this product
E) the objective function value will decrease by $20 if we produce an additional unit of this product

Correct Answer

verifed

verified

Showing 41 - 44 of 44

Related Exams

Show Answer