Filters
Question type

Use the Trapezoidal Rule to approximate the value of the definite integral 031+xdx,n=4\int _ { 0 } ^ { 3 } \sqrt { 1 + x } d x , n = 4 . Round your answer to three decimal places.


A) 2.7931
B) 2.7955
C) 4.6552
D) 4.6615
E) 6.7643

Correct Answer

verifed

verified

Use integration by parts to find the integral below. 5xnlnaxdx(a0,n1) \int 5 x ^ { n } \ln a x d x ( a \neq 0 , n \neq - 1 )


A) 5xnnlnax5n2xn+C\frac { 5 x ^ { n } } { n } \ln a x - \frac { 5 } { n ^ { 2 } } x ^ { n } + C
B) 6xn+1n+1lnax6(n+1) 2xn+1+C\frac { 6 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 6 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
C) 5xnn5(n+1) 2lnax+C\frac { 5 x ^ { n } } { n } - \frac { 5 } { ( n + 1 ) ^ { 2 } } \ln a x + C
D) 5xn+1n+1lnax5(n+1) 2xn+1+C\frac { 5 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 5 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
E) 6xn+1n+16n2lnax+C\frac { 6 x ^ { n + 1 } } { n + 1 } - \frac { 6 } { n ^ { 2 } } \ln a x + C

Correct Answer

verifed

verified

D

Evaluate the definite integral 267+x2dx\int _ { 2 } ^ { 6 } \sqrt { 7 + x ^ { 2 } } d x . Round your answer to three decimal places.


A) 31.060
B) 25.997
C) 37.693
D) 34.376
E) 19.364

Correct Answer

verifed

verified

Use the table of integrals to find the average value of the growth function N=3301+e5.70.25tN = \frac { 330 } { 1 + e ^ { 5.7 - 0.25 t } } over the interval [22,27][ 22,27 ] , where N the size of a population and t is the time in days. Round your answer to three decimal places.


A) 200.507
B) 758.790
C) 198.507
D) 391.543
E) 321.407

Correct Answer

verifed

verified

Evaluate the improper integral if it converges, or state that it diverges. 11x8dx\int _ { 1 } ^ { \infty } \frac { 1 } { x ^ { 8 } } d x


A) 19\frac { 1 } { 9 }
B) 99
C) 88
D) 17\frac { 1 } { 7 }
E) diverges

Correct Answer

verifed

verified

The probability of recall in an experiment is modeled by P(axb) =ab7514(x4+5x) dx,0x1P ( a \leq x \leq b ) = \int _ { a } ^ { b } \frac { 75 } { 14 } \left( \frac { x } { \sqrt { 4 + 5 x } } \right) d x , 0 \leq x \leq 1 where x is the percent of recall. What is the probability of recalling between 50% and 70%? Round your answer to three decimal places.


A) 0.243
B) 0.206
C) 0.650
D) 0.163
E) 0.832

Correct Answer

verifed

verified

The rate of change in the number of subscribers SS to a newly introduced magazine is modeled by dSdt=1000t2e1,0t6\frac { d S } { d t } = 1000 t ^ { 2 } e ^ { - 1 } , 0 \leq t \leq 6 where tt is the time in years. Use Simpson's Rule n=12n = 12 with to estimate the total increase in the number of subscribers during the first 6 years.


A) \approx 1870 subscribers
B) \approx 1780 subscribers
C) \approx 1800 subscribers
D) \approx 1878 subscribers
E) \approx 1987 subscribers

Correct Answer

verifed

verified

Approximate the value of the definite integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of n. Round your answers to three significant digits. 02ex2dx,n=4\int _ { 0 } ^ { 2 } e ^ { - x ^ { 2 } } d x , n = 4


A) a. Trapezoidal Rule: 1.881\approx 1.881 b. Simpson's Rule: 0.882\approx 0.882
B) a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.882\approx 0.882
C) a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 1.882\approx 1.882
D) a. Trapezoidal Rule: 0.081\approx 0.081 b. Simpson's Rule: 0.882\approx 0.882
E) a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.082\approx 0.082

Correct Answer

verifed

verified

Use a table of integrals to find the indefinite integral x2(8+2x) 7dx\int \frac { x ^ { 2 } } { ( 8 + 2 x ) ^ { 7 } } d x .


A) [14(8+2x) 4+165(8+2x) 5646(8+2x) 6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
B) 18[14(8+2x) 4+165(8+2x) 5646(8+2x) 6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
C) 18[14(8+2x) 4+165(8+2x) 5+646(8+2x) 6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
D) 18[14(8+2x) 4165(8+2x) 5+646(8+2x) 6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
E) [14(8+2x) 4165(8+2x) 5+646(8+2x) 6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C

Correct Answer

verifed

verified

Present Value of a Continuous Stream of Income. An electronics company generates a continuous stream of income of 4t4 t million dollars per year, where t is the number of years that the company has been in operation. Find the present value of this stream of income over the first 9 years at a continuous interest rate of 12%. Round answer to one decimal place.


A) $143.7 million
B) $81.6 million
C) $182.7 million
D) $343.2 million
E) $85.8 million

Correct Answer

verifed

verified

Use integration by parts to evaluate 3x3lnxdx\int 3 x ^ { 3 } \ln x d x .


A) 3x4(4ln(x) +1) 4+C\frac { - 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 4 } + C
B) 3x3(3ln(x) +1) 3+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) + 1 ) } { 3 } + C
C) 3x4(4ln(x) +1) 16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 16 } + C
D) 3x3(3ln(x) 1) 9+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) - 1 ) } { 9 } + C
E) 3x4(4ln(x) 1) 16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) - 1 ) } { 16 } + C

Correct Answer

verifed

verified

Use a table of integrals with forms involving a + bu to find x28+11xdx\int \frac { x ^ { 2 } } { 8 + 11 x } d x


A) 1121(11x8ln8+11x) +C\frac { 1 } { 121 } ( 11 x - 8 \ln | 8 + 11 x | ) + C
B) 11331(11x648+11x16ln8+11x) +C\frac { 1 } { 1331 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C
C) 11331(11x2(11x16) +64ln8+11x) +C\frac { 1 } { 1331 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
D) 1121(11x2(11x16) +64ln8+11x) +C\frac { 1 } { 121 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
E) 1121(11x648+11x16ln8+11x) +C\frac { 1 } { 121 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C

Correct Answer

verifed

verified

Use a table of integrals to find the indefinite integral x9ex10dx\int x ^ { 9 } e ^ { x ^ { 10 } } d x .


A) 19ex10+C\frac { 1 } { 9 } e ^ { x ^ { 10 } } + C
B) 110ex9+C\frac { 1 } { 10 } e ^ { x ^ { 9 } } + C
C) 110ex10+C\frac { 1 } { 10 } e ^ { x ^ { 10 } } + C
D) 19ex9+C\frac { 1 } { 9 } e ^ { x ^ { 9 } } + C
E) 110ex+C\frac { 1 } { 10 } e ^ { x } + C

Correct Answer

verifed

verified

Suppose the mean height of American women between the ages of 30 and 39 is 64.5 inches, and the standard deviation is 2.7 inches. Use a symbolic integration utility to approximate the probability that a 30-to 39-year-old woman chosen at random is between 5 feet 4 inches and 6 feet tall.


A) 0.8547
B) 0.5707
C) 0.4257
D) 0.5734
E) 0.9522

Correct Answer

verifed

verified

Find the indefinite integral. t4t+9dt\int t \sqrt { 4 t + 9 } d t


A) (4t+9) 3/2(2t+3) 20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
B) (4t+9) 3/2(2t6) 20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 6 ) } { 20 } + C
C) (4t+9) 3/2(2t3) 20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 3 ) } { 20 } + C
D) (4t9) 3/2(2t+3) 20+C\frac { ( 4 t - 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
E) (4t+9) 3/2(2t+6) 20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 6 ) } { 20 } + C

Correct Answer

verifed

verified

C

Use integration by parts to find the integral below. lnx3dx\int \ln x ^ { 3 } d x


A) lnx43x4+C\ln x ^ { 4 } - 3 x ^ { 4 } + C
B) xlnx44x4+Cx \ln x ^ { 4 } - 4 x ^ { 4 } + C
C) lnx4x4+C\ln x ^ { 4 } - x ^ { 4 } + C
D) xlnx33x+Cx \ln x ^ { 3 } - 3 x + C
E) 4xlnx44x+C4 x \ln x ^ { 4 } - 4 x + C

Correct Answer

verifed

verified

The capitalized cost CC of an asset is given by C=C0+0nC(t) ertdtC = C _ { 0 } + \int _ { 0 } ^ { n } C ( t ) e ^ { - r t } d t where C0C _ { 0 } is the original investment, tt is the time in years, rr is the annual interest rate compounded continuously, and C(t) C ( t ) is the annual cost of maintenance (in dollars) . Find the capitalized cost of an asset (a) for 5 years, (b) for 10 years, and (c) forever. C0=$300,000,C(t) =15,000,r=6%C _ { 0 } = \$ 300,000 , C ( t ) = 15,000 , r = 6 \%


A) a. For n=5,Cn = 5 , C \approx $253,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
B) a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $1,466,666.67
C) a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $2807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
D) a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
E) a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $466,666.67

Correct Answer

verifed

verified

Decide whether the integral is proper or improper. 05exdx\int _ { 0 } ^ { 5 } e ^ { - x } d x


A) The integral is improper.
B) The integral is proper.

Correct Answer

verifed

verified

Identify u and dv for finding the integral using integration by parts. x4e7xdx\int x ^ { 4 } e ^ { 7 x } d x


A) u=x4;dv=e7xdxu = x ^ { 4 } ; d v = e ^ { 7 x } d x
B) u=x4;dv=e7xdxu = \int x ^ { 4 } ; d v = \int e ^ { 7 x } d x
C) u=x4dx,dv=e7xdxu = \int x ^ { 4 } d x , d v = e ^ { 7 x } d x
D) u=x4dx;dv=e7xdxu = \int x ^ { 4 } d x ; d v = \int e ^ { 7 x } d x
E) u=x4dx,dv=e7xdxu = x ^ { 4 } d x , d v = \int e ^ { 7 x } d x

Correct Answer

verifed

verified

A

Evaluate the definite integral 13x2lnx\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x dx. Round your answer to three decimal places.


A) 7.499
B) 8.562
C) 5.896
D) 6.999
E) 6.236

Correct Answer

verifed

verified

Showing 1 - 20 of 50

Related Exams

Show Answer