Filters
Question type

Study Flashcards

Find the curvature K of the curve given below. r(t) =ti+2t2j+2tk\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } + 2 t \mathbf { k }


A) 5(5+16t2) 3\frac { 5 } { \sqrt { \left( 5 + 16 t ^ { 2 } \right) ^ { 3 } } }
B) 45(5+4t2) 3/2\frac { 4 \sqrt { 5 } } { \left( 5 + 4 t ^ { 2 } \right) ^ { 3 / 2 } }
C) 2(5+16t2) 3\frac { 2 } { \sqrt { \left( 5 + 16 t ^ { 2 } \right) ^ { 3 } } }
D) 4(5+16t2) 3\frac { 4 } { \sqrt { \left( 5 + 16 t ^ { 2 } \right) ^ { 3 } } }
E) 5(5+16t2) 34\sqrt [ 4 ] { \frac { 5 } { \left( 5 + 16 t ^ { 2 } \right) ^ { 3 } } }

F) B) and E)
G) A) and D)

Correct Answer

verifed

verified

Find the principle unit normal vector to the curve given below at the specified point. r(t) =ti+4tj,t=3\mathbf { r } ( t ) = t \mathbf { i } + \frac { 4 } { t } \mathbf { j } , \quad t = 3


A) N(3) =497i997jN ( 3 ) = \frac { 4 } { \sqrt { 97 } } \mathbf { i } - \frac { 9 } { \sqrt { 97 } } \mathbf { j }
B) N(3) =497i+997jN ( 3 ) = \frac { 4 } { \sqrt { 97 } } \mathbf { i } + \frac { 9 } { \sqrt { 97 } } \mathbf { j }
C) N(3) =41297i91297jN ( 3 ) = \frac { 4 } { \sqrt { 1297 } } \mathbf { i } - \frac { 9 } { \sqrt { 1297 } } \mathbf { j }
D) N(3) =41297i+91297jN ( 3 ) = \frac { 4 } { \sqrt { 1297 } } \mathbf { i } + \frac { 9 } { \sqrt { 1297 } } \mathbf { j }
E) N(3) =497i997jN ( 3 ) = \frac { - 4 } { \sqrt { 97 } } \mathbf { i } - \frac { 9 } { \sqrt { 97 } } \mathbf { j }

F) B) and C)
G) None of the above

Correct Answer

verifed

verified

 Find r(t)  given the following. \text { Find } \mathbf { r } ( t ) \text { given the following. } rt(t) =18t5j+6tk,r(0) =2i+18j\mathbf { r } ^ { t } ( t ) = 18 t ^ { 5 } \mathbf { j } + 6 t \mathbf { k } , \mathbf { r } ( 0 ) = 2 \mathbf { i } + 18 \mathbf { j }


A) r(t) =2i+(18+3t6) j+3t2k\mathbf { r } ( t ) = 2 \mathbf { i } + \left( 18 + 3 t ^ { 6 } \right) \mathbf { j } + 3 t ^ { 2 } \mathbf { k }
B) r(t) =2i+3t2j+(18+3t6) k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t ^ { 2 } \mathbf { j } + \left( 18 + 3 t ^ { 6 } \right) \mathbf { k }
C) r(t) =(18+3t6) j+3t2k\mathbf { r } ( t ) = \left( 18 + 3 t ^ { 6 } \right) \mathbf { j } + 3 t ^ { 2 } \mathbf { k }
D) r(t) =2i+(183t6) j3t2k\mathbf { r } ( t ) = 2 \mathbf { i } + \left( 18 - 3 t ^ { 6 } \right) \mathbf { j } - 3 t ^ { 2 } \mathbf { k }
E) r(t) =18i+(2+3t6) j+3t2k\mathbf { r } ( t ) = 18 \mathbf { i } + \left( 2 + 3 t ^ { 6 } \right) \mathbf { j } + 3 t ^ { 2 } \mathbf { k }

F) D) and E)
G) C) and E)

Correct Answer

verifed

verified

 Find rt(t) rtt(t)  given the following vector function. \text { Find } \mathbf { r } ^ { t } ( t ) \cdot \mathbf { r } ^ { tt } ( t ) \text { given the following vector function. } r(t) =3costi+5sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 5 \sin t \mathbf { j }


A) costsint\cos t \sin t
B) 34costsint- 34 \cos t \sin t
C) 34costsint34 \cos t \sin t
D) 16sintcost- 16 \sin \mathrm { t } \cos \mathrm { t }
E) 3costsint3 \cos t \sin t

F) A) and E)
G) B) and E)

Correct Answer

verifed

verified

Evaluate the definite integral below. 02(6t2i+10t4j+15t4k) dt\int _ { 0 } ^ { 2 } \left( - 6 t ^ { 2 } \mathbf { i } + 10 t ^ { 4 } \mathbf { j } + 15 t ^ { 4 } \mathbf { k } \right) d t


A) 16i+64j+64k- 16 \mathbf { i } + 64 \mathbf { j } + 64 \mathbf { k }
B) 64i+64j+96k64 \mathbf { i } + 64 \mathbf { j } + 96 \mathbf { k }
C) 64i+128j+64k64 \mathbf { i } + 128 \mathbf { j } + 64 \mathbf { k }
D) 16i+128j+96k- 16 \mathbf { i } + 128 \mathbf { j } + 96 \mathbf { k }
E) 16i+64j+96k- 16 \mathbf { i } + 64 \mathbf { j } + 96 \mathbf { k }

F) None of the above
G) C) and E)

Correct Answer

verifed

verified

Dt[2r(t) 5u(t) ] given the following D _ { t } [ 2 \mathbf { r } ( t ) - 5 \mathbf { u } ( t ) ] \text { given the following } Use the properties of the derivative to find vector-valued functions. r(t) =2ti+6t3j+2t2ku(t) =2i+4t2j+3t3k\begin{array} { l } \mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t ^ { 3 } \mathbf { j } + 2 t ^ { 2 } \mathbf { k } \\\mathbf { u } ( t ) = 2 \mathbf { i } + 4 t ^ { 2 } \mathbf { j } + 3 t ^ { 3 } \mathbf { k }\end{array}


A) 4i+(36t340t) j+(8t45t2) k4 \mathbf { i } + \left( 36 t ^ { 3 } - 40 t \right) \mathbf { j } + \left( 8 t - 45 t ^ { 2 } \right) \mathbf { k }
B) 4i+(36t240t) j+(8t245t) k4 \mathbf { i } + \left( 36 t ^ { 2 } - 40 t \right) \mathbf { j } + \left( 8 t ^ { 2 } - 45 t \right) \mathbf { k }
C) 4ti+(36t2+40t) j(8t+45t2) k4 t \mathbf { i } + \left( 36 t ^ { 2 } + 40 t \right) \mathbf { j } - \left( 8 t + 45 t ^ { 2 } \right) \mathbf { k }
D) 4i+(36t2+40t) j+(8t+45t2) k4 \mathbf { i } + \left( 36 t ^ { 2 } + 40 t \right) \mathbf { j } + \left( 8 t + 45 t ^ { 2 } \right) \mathbf { k }
E) 4i+(36t240t) j+(8t45t2) k4 \mathbf { i } + \left( 36 t ^ { 2 } - 40 t \right) \mathbf { j } + \left( 8 t - 45 t ^ { 2 } \right) \mathbf { k }

F) A) and D)
G) All of the above

Correct Answer

verifed

verified

The quarterback of a football team releases a pass at a height of 8 feet above the playing field, and the football is caught by a receiver 38 yards directly downfield at a height of 4 feet. The pass is released at an angle of 45 with the horizontal. Find the speed of the football when it is 45 ^ { \circ } \text { with the horizontal. Find the speed of the football when it is } released. Round your answer to three decimal places.


A) 33.169 feet per second
B) 59.366 feet per second
C) 19.462 feet per second
D) 118.732 feet per second

E) C) and D)
F) B) and C)

Correct Answer

verifed

verified

Find the curvature of the plane curve y=3x2+4 at x=2y = 3 x ^ { 2 } + 4 \text { at } x = - 2 . Round your answer to three decimal places.


A) 0.498
B) 0.332
C) 0.015
D) 0.005
E) 0.003

F) All of the above
G) B) and E)

Correct Answer

verifed

verified

Find the unit tangent vector to the curve given below at the specified point. r(2) =5costi+4sintj,t=2π3\mathbf { r } ( 2 ) = 5 \cos t \mathbf { i } + 4 \sin t \mathbf { j } , t = \frac { 2 \pi } { 3 }


A) T(2π3) =5391i491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 4 } { \sqrt { 91 } } \mathbf { j }
B) T(2π3) =5391i+491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } + \frac { 4 } { \sqrt { 91 } } \mathbf { j }
C) T(2π3) =4391i591j\mathbf { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 4 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 5 } { \sqrt { 91 } } \mathbf { j }
D) T(2π3) =5391i+491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } + \frac { 4 } { \sqrt { 91 } } \mathbf { j }
E) T(2π3) =5391i491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 4 } { \sqrt { 91 } } \mathbf { j }

F) B) and D)
G) A) and E)

Correct Answer

verifed

verified

Evaluate the limit given below. limt2(e3ti+2t2t2+6tj+2tk) \lim _ { t \rightarrow 2 } \left( e ^ { - 3 t } i + \frac { 2 t ^ { 2 } } { t ^ { 2 } + 6 t } j + \frac { 2 } { t } k \right)


A) r(t) =i+2j\mathbf { r } ( t ) = i + 2 j
B) r(t) =ir ( t ) = i
C) r(t) =2j\mathbf { r } ( t ) = 2 j
D) r(t) =0\mathbf { r } ( t ) = 0
E) The limit does not exist.

F) B) and D)
G) C) and E)

Correct Answer

verifed

verified

C

 Find aN at time t=2 for the space curve r(t) =(5t7) i+t2j7tk. Round your \text { Find } a _ { \mathbb { N } } \text { at time } t = 2 \text { for the space curve } \mathbf { r } ( t ) = ( 5 t - 7 ) \mathbf { i } + t ^ { 2 } \mathbf { j } - 7 t \mathbf { k } \text {. Round your } answer to three decimal places.


A) 0.970
B) 0.465
C) 0.930
D) 1.814
E) 1.060

F) B) and D)
G) A) and B)

Correct Answer

verifed

verified

Find the principle unit normal vector to the curve given below at the specified point. r(t) =5costi+5sintj,t=5π3\mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } , \quad t = \frac { 5 \pi } { 3 }


A) N=(32,12}\mathbf { N } = \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\}
B) N=(32,12) \mathbf { N } = \left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right)
C) N=(12,32) \mathbf { N } = \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right)
D) N=(12,32) \mathbf { N } = \left( - \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right)
E) N=(12,32) \mathrm { N } = \left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right)

F) A) and C)
G) C) and E)

Correct Answer

verifed

verified

Use the properties of the derivative to find Dt(r(t) ×u(t) )  given the following D _ { t } ( \mathbf { r } ( t ) \times \mathbf { u } ( t ) ) \text { given the following } vector-valued functions. r(t) =4cos4tj+4sin4tku(t) =5ti+4cos4tj+4sin4tk\begin{array} { l } \mathbf { r } ( t ) = 4 \cos 4 t \mathbf { j } + 4 \sin 4 t \mathbf { k } \\\mathbf { u } ( t ) = \frac { 5 } { t } \mathbf { i } + 4 \cos 4 t \mathbf { j } + 4 \sin 4 t \mathbf { k }\end{array}


A) (80cos(4t) t20sin(4t) t2) j+(20cos(4t) t280sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
B) (80cos(4t) t+20sin(4t) t2) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } + \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
C) (80cos(4t) t220sin(4t) t) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 20 \sin ( 4 t ) } { t } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
D) (80cos(4t) t20sin(4t) t2) i+(20cos(4t) t280sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { i } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
E) (80cos(4t) t20sin(4t) t2) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }

F) B) and E)
G) D) and E)

Correct Answer

verifed

verified

 The position vector r(t) =4ti+2tj+16t2k describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = 4 t \mathbf { i } + 2 t \mathbf { j } + \frac { 1 } { 6 } t ^ { 2 } \mathbf { k } \text { describes the path of an object moving in } space. Find the acceleration a(t) \mathbf { a } ( t ) of the object.


A) a(t) =16k\mathbf { a } ( t ) = \frac { 1 } { 6 } \mathbf { k }
B) a(t) =4i+2j\mathbf { a } ( t ) = 4 \mathbf { i } + 2 \mathbf { j }
C) a(t) =4i+2j+13k\mathbf { a } ( t ) = 4 \mathbf { i } + 2 \mathbf { j } + \frac { 1 } { 3 } \mathbf { k }
D) a(t) =4i+2j+2k\mathbf { a } ( t ) = 4 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
E) a(t) =13k\mathbf { a } ( t ) = \frac { 1 } { 3 } \mathbf { k }

F) A) and E)
G) A) and B)

Correct Answer

verifed

verified

 The position vector r(t) =8ti++4tj+5tk describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = 8 t \mathbf { i } + + 4 t \mathbf { j } + 5 t \mathbf { k } \text { describes the path of an object moving in } space. Find the speed s(t) s ( t ) of the object.


A) s(t) =1/73s ( t ) = 1 / 73
B) s(t) =105s ( t ) = 105
C) s(t) =1/105s ( t ) = 1 / 105
D) s(t) =1/85s ( t ) = 1 / 85
E) s(t) =17s ( t ) = 17

F) A) and D)
G) A) and B)

Correct Answer

verifed

verified

Given the vector-valued function below, evaluate r(11+Δt) r(11) \mathbf { r } ( 11 + \Delta t ) - \mathbf { r } ( 11 ) r(t) =lnti+8tj+4tk\mathbf { r } ( t ) = \ln t \mathbf { i } + \frac { 8 } { t } \mathbf { j } + 4 t \mathbf { k }


A) ln(1+Δt11) i8Δt(11+Δt) 11j+4k\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \mathbf { k }
B) ln(1+Δt11) i+8Δt(11+Δt) 11j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } + \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }
C) ln(1+Δt11) i8Δt(11+Δt) 11j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }
D) ln(1+Δt11) i8Δt(11+Δt) j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) } \mathbf { j } + 4 \Delta t \mathbf { k }
E) ln(1Δt11) i8Δt(11+Δt) 11j+4Δtk\ln \left( 1 - \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }

F) D) and E)
G) A) and D)

Correct Answer

verifed

verified

 Find aT at time t=2 for the space curve r(t) =(6t7) i+t2j10tk. Round your \text { Find } a _ { \mathbf { T } } \text { at time } t = 2 \text { for the space curve } \mathbf { r } ( t ) = ( 6 t - 7 ) \mathbf { i } + t ^ { 2 } \mathbf { j } - 10 t \mathbf { k } \text {. Round your } answer to three decimal places.


A) 0.781
B) 0.724
C) 0.343
D) 0.686
E) 0.649

F) B) and C)
G) None of the above

Correct Answer

verifed

verified

A particle moves in the yz-plane along the curve represented by the vector-valued function r(t) =(4cost) j+(9sint) k\mathbf { r } ( t ) = ( 4 \cos t ) \mathbf { j } + ( 9 \sin t ) \mathbf { k } . Find the minimum value of rt\left\| \mathbf { r } ^ {t } \right\|


A) 6
B) 4
C) 7
D) 9
E) 8

F) C) and D)
G) A) and E)

Correct Answer

verifed

verified

B

Find the domain of the vector-valued function given below. r(t) =16t2i+1t+6j+(t4) k\mathbf { r } ( t ) = \sqrt { 16 - t ^ { 2 } } \mathbf { i } + \frac { 1 } { t + 6 } \mathbf { j } + ( t - 4 ) \mathbf { k }


A) [,4) [ - \infty , 4 )
B) [0,4][ 0,4 ]
C) [4,4][ - 4,4 ]
D) (,) ( - \infty , \infty )
E) [4,) [ - 4 , \infty )

F) D) and E)
G) A) and D)

Correct Answer

verifed

verified

Because of a storm, ground controllers instruct the pilot of a plane flying at an altitude of 1.6 miles to make a 90 90^{\circ} turn and climb to an altitude of 1.8 miles. The model for the path of the plane during this maneuver is r(t) =4cos4πt,4sin4πt,1.6+1.6t,0t18 where t is the \mathbf { r } ( t ) = \langle 4 \cos 4 \pi t , 4 \sin 4 \pi t , 1.6 + 1.6 t \rangle , 0 \leq t \leq \frac { 1 } { 8 } \text { where } t \text { is the } time in hours and is the distance in miles. Determine the speed of the plane. Round your answer to The nearest integer.


A) 50 mi/h
B) 16 mi/h
C) 54 mi/h
D) 34 mi/h
E) 79 mi/h

F) A) and B)
G) C) and D)

Correct Answer

verifed

verified

A

Showing 1 - 20 of 83

Related Exams

Show Answer