Filters
Question type

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x3) f(x) =2(x-3)  Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)


A) Shift y=2xy = 2 ^ { x } left 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
B) Shift y=2xy = 2 ^ { x } right 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
C) Shift y=2xy = 2 ^ { x } down 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
D) Shift y=2xy = 2 ^ { x } up 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)

Correct Answer

verifed

verified

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =log4(x+5) f(x) =\log _{4}(x+5)  Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units


A) Shift y=log4xy = \log _ { 4 } x left 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
B) Shift y=log4xy = \log _ { 4 } x left 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
C) Shift y=log4xy = \log _ { 4 } x right 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
D) Shift y=log4xy = \log _ { 4 } x right 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units

Correct Answer

verifed

verified

Provide an appropriate response. -Prove that the function f is one-to-one. f(x)=x3+5f ( x ) = \sqrt [ 3 ] { x } + 5

Correct Answer

verifed

verified

Assume that blured image for any numbers blured image and blured image in th...

View Answer

Evaluate to four decimal places using a calculator. - e1.233\mathrm { e } ^ { 1.233 }


A) 7.38917.3891
B) 3.43153.4315
C) 3.35163.3516
D) 1.52031.5203

Correct Answer

verifed

verified

Provide an appropriate response. -Explain why negative numbers do not have logarithms.

Correct Answer

verifed

verified

Consider blured image, or blured image, where blured image is a po...

View Answer

Convert to a logarithmic equation. - 53=1255 ^ { 3 } = 125


A) 3=log12553 = \log _ { 125 } 5
B) 125=log53125 = \log _ { 5 } 3
C) 5=log31255 = \log _ { 3 } 125
D) 3=log51253 = \log _ { 5 } 125

Correct Answer

verifed

verified

Find the domain and range of the inverse of the given function. - f(x) =x4.93f ( x ) = \sqrt [ 3 ] { x - 4.9 }


A) Domain: [4.9,) [ 4.9 , \infty ) ; range: [0,) [ 0 , \infty )
B) Domain: all real numbers; range: [4.9,) [ 4.9 , \infty )
C) Domain and range: all real numbers
D) Domain: all real numbers; range: [0,) [ 0 , \infty )

Correct Answer

verifed

verified

Find the domain and the vertical asymptote of the function. - g(x) =ln(x8) g ( x ) = \ln ( x - 8 )


A) Domain: (8,) ( 8 , \infty ) ; vertical asymptote: x=8x = 8
B) Domain: (,) ( - \infty , \infty ) ; vertical asymptote: none
C) Domain: (8,) ( - 8 , \infty ) ; vertical asymptote: x=8x = - 8
D) Domain: (0,) ( 0 , \infty ) ; vertical asymptote: x=0x = 0

Correct Answer

verifed

verified

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x1) 1f(x) =3(x-1) -1


A) Shift y=3xy = 3 ^ { x } left 1 unit(s) and up 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
B) Shift y=3xy = 3 ^ { x } left 1 unit(s) and down 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
C) Shift y=3xy = 3 ^ { x } right 1 unit(s) and up 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
D) Shift y=3xy = 3 ^ { x } right 1 unit(s) and dawn 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)

Correct Answer

verifed

verified

Solve the problem. -An initial investment of $14,000 is appreciated for 4 years in an account that earns 13% interest, compounded semiannually. Find the amount of money in the account at the end of the period.


A) $22,826.63
B) $23,169.94
C) $9169.94
D) $21,755.81

Correct Answer

verifed

verified

Convert to an exponential equation. - log864=t\log _ { 8 } 64 = \mathrm { t }


A) 64t=864 ^ { t } = 8
B) 8t=648 ^ { t } = 64
C) 864=t864 = t
D) t8=64t ^ { 8 } = 64

Correct Answer

verifed

verified

Using the horizontal-line test, determine whether the function is one-to-one. - f(x) =7x22f(x) =\frac{7}{x^{2}-2}  Using the horizontal-line test, determine whether the function is one-to-one. - f(x) =\frac{7}{x^{2}-2}     A)  Yes B)   \mathrm { No }


A) Yes
B) No\mathrm { No }

Correct Answer

verifed

verified

Express as a difference of logarithms. - log4911\log _ { 4 } \frac { 9 } { 11 }


A) log49÷log411\log _ { 4 } 9 \div \log _ { 4 } 11
B) log49log411\log _ { 4 } 9 - \log _ { 4 } 11
C) log411log49\log _ { 4 } 11 - \log _ { 4 } 9
D) log29log211\log _ { 2 } 9 - \log _ { 2 } 11

Correct Answer

verifed

verified

Graph the piecewise function. - f(x) ={ex8, for x<2x2, for 2x<1x3, for x1f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\x - 2 , & \text { for } - 2 \leq x < 1 \\x ^ { 3 } , & \text { for } x \geq 1\end{array} \right.  Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)


A)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
B)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
C)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
D)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)

Correct Answer

verifed

verified

Choose the function that might be used as a model for the data in the scatter plot. - Choose the function that might be used as a model for the data in the scatter plot. -  A)  Polynomial, not quadratic B)  Exponential,  \mathrm { f } ( \mathrm { x } )  = a \mathrm {~b} ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } )  = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C)  Logistic,  f ( x )  = \frac { a } { 1 + b e ^ { - k x } }  D)  Logarithmic,  f ( x )  = a + b \ln x


A) Polynomial, not quadratic
B) Exponential, f(x) =a bx\mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } } or f(x) =P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Logistic, f(x) =a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
D) Logarithmic, f(x) =a+blnxf ( x ) = a + b \ln x

Correct Answer

verifed

verified

The graph of a one-to-one function f is given. Sketch the graph of the inverse function f1\mathrm { f } ^ { - 1 } , on the same set of axes. Use a dashed line for the inverse. - The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)


A)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
B)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
C)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
D)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)

Correct Answer

verifed

verified

Solve the problem. -An initial investment of $1000 is appreciated for 4 years in an account that earns 4% interest, compounded annually. Find the amount of money in the account at the end of the period.


A) $1216.65
B) $169.86
C) $1169.86
D) $1124.86

Correct Answer

verifed

verified

For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. } - f(x)=74x,f1(x)=47xf ( x ) = \frac { 7 } { 4 } x , f ^ { - 1 } ( x ) = \frac { 4 } { 7 } x

Correct Answer

verifed

verified

Provide an appropriate response. -Suppose that $1000 is invested for 5 years at 4% interest, compounded annually. In what year will the most interest be earned? Why?

Correct Answer

verifed

verified

The most interest will be earn...

View Answer

Solve. -How long will it take for $3700\$ 3700 to grow to $34,300\$ 34,300 at an interest rate of 10.3%10.3 \% if the interest is compounded continuously? Round the number of years to the nearest hundredth.


A) 0.22yr0.22 \mathrm { yr }
B) 2.16yr2.16 \mathrm { yr }
C) 2161.95yr2161.95 \mathrm { yr }
D) 21.62yr21.62 \mathrm { yr }

Correct Answer

verifed

verified

Showing 81 - 100 of 106

Related Exams

Show Answer