Filters
Question type

Study Flashcards

Find the exact value of the expression. Do not use a calculator. -If tanθ=2\tan \theta = 2 , find the exact value of cot(π2θ) \cot \left( \frac { \pi } { 2 } - \theta \right) .


A) 2
B) 12\frac { 1 } { 2 }
C) 1
D) 3

Correct Answer

verifed

verified

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round answer to two decimal places. -The minute hand of a clock is 4 inches long. How far does the tip of the minute hand move in 35 minutes? If necessary, round the answer to two decimal places.


A) 14.6614.66 inches
B) 17.1717.17 inches
C) 15.8915.89 inches
D) 12.9212.92 inches

Correct Answer

verifed

verified

Use the Pythagorean Theorem to find the length of the missing side.Then find the indicated trigonometric function of the given angle. Give an exact answer with a rational denominator. -Find cosθ\cos \theta  Use the Pythagorean Theorem to find the length of the missing side.Then find the indicated trigonometric function of the given angle. Give an exact answer with a rational denominator. -Find  \cos \theta     A)   \frac { 3 \sqrt { 34 } } { 34 }  B)   \frac { \sqrt { 34 } } { 5 }  C)   \frac { \sqrt { 34 } } { 3 }  D)   \frac { 5 \sqrt { 34 } } { 34 }


A) 33434\frac { 3 \sqrt { 34 } } { 34 }
B) 345\frac { \sqrt { 34 } } { 5 }
C) 343\frac { \sqrt { 34 } } { 3 }
D) 53434\frac { 5 \sqrt { 34 } } { 34 }

Correct Answer

verifed

verified

Use a calculator to find the value of the expression rounded to two decimal places. - sin1(33) \sin ^ { - 1 } \left( \frac { \sqrt { 3 } } { 3 } \right)


A) 0.620.62
B) 35.2635.26
C) 0.960.96
D) 54.7454.74

Correct Answer

verifed

verified

Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2cos3πxy=2 \cos 3 \pi x  Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2 \cos 3 \pi x     A)  y=2 \sec 3 \pi x    B)   y = 2 \sin 3 \pi x    C)   y = 2 \csc 3 \pi x    D)   y = 2 \cot 3 \pi x


A) y=2sec3πxy=2 \sec 3 \pi x
 Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2 \cos 3 \pi x     A)  y=2 \sec 3 \pi x    B)   y = 2 \sin 3 \pi x    C)   y = 2 \csc 3 \pi x    D)   y = 2 \cot 3 \pi x
B) y=2sin3πxy = 2 \sin 3 \pi x
 Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2 \cos 3 \pi x     A)  y=2 \sec 3 \pi x    B)   y = 2 \sin 3 \pi x    C)   y = 2 \csc 3 \pi x    D)   y = 2 \cot 3 \pi x
C) y=2csc3πxy = 2 \csc 3 \pi x
 Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2 \cos 3 \pi x     A)  y=2 \sec 3 \pi x    B)   y = 2 \sin 3 \pi x    C)   y = 2 \csc 3 \pi x    D)   y = 2 \cot 3 \pi x
D) y=2cot3πxy = 2 \cot 3 \pi x
 Understand the Graphs of y = csc x and y = sec x Use the graph to obtain the graph of the reciprocal function. Give the equation of the function for the graph that you obtain. - y=2 \cos 3 \pi x     A)  y=2 \sec 3 \pi x    B)   y = 2 \sin 3 \pi x    C)   y = 2 \csc 3 \pi x    D)   y = 2 \cot 3 \pi x

Correct Answer

verifed

verified

Determine the amplitude or period as requested. Graph Variations of y = cos x -Amplitude of y=34cos(6π5x) y = \frac { 3 } { 4 } \cos \left( - \frac { 6 \pi } { 5 } x \right)


A) 34\frac { 3 } { 4 }
B) 53\frac { 5 } { 3 }
C) 4π3\frac { 4 \pi } { 3 }
D) 6π5\frac { 6 \pi } { 5 }

Correct Answer

verifed

verified

Use reference angles to find the exact value of the expression. Do not use a calculator. - sec5π4\sec \frac { 5 \pi } { 4 }


A) 2- \sqrt { 2 }
B) 233- \frac { 2 \sqrt { 3 } } { 3 }
C) -2
D) 22\frac { \sqrt { 2 } } { 2 } )

Correct Answer

verifed

verified

Graph Variations of y = csc x and y = sec x - y=cscxy=\csc x  Graph Variations of y = csc x and y = sec x - y=\csc x    A)    B)    C)    D)


A)
 Graph Variations of y = csc x and y = sec x - y=\csc x    A)    B)    C)    D)
B)
 Graph Variations of y = csc x and y = sec x - y=\csc x    A)    B)    C)    D)
C)
 Graph Variations of y = csc x and y = sec x - y=\csc x    A)    B)    C)    D)
D)
 Graph Variations of y = csc x and y = sec x - y=\csc x    A)    B)    C)    D)

Correct Answer

verifed

verified

Determine the amplitude or period as requested. -Period of y=14sinxy = - \frac { 1 } { 4 } \sin x


A) 2π2 \pi
B) π\pi
C) π4\frac { \pi } { 4 }
D) 14- \frac { 1 } { 4 }

Correct Answer

verifed

verified

Additional Concepts - y=sec(2x+π4) +1y=\sec \left(2 x+\frac{\pi}{4}\right) +1  Additional Concepts - y=\sec \left(2 x+\frac{\pi}{4}\right) +1    A)    B)    C)    D)


A)
 Additional Concepts - y=\sec \left(2 x+\frac{\pi}{4}\right) +1    A)    B)    C)    D)
B)
 Additional Concepts - y=\sec \left(2 x+\frac{\pi}{4}\right) +1    A)    B)    C)    D)
C)
 Additional Concepts - y=\sec \left(2 x+\frac{\pi}{4}\right) +1    A)    B)    C)    D)
D)
 Additional Concepts - y=\sec \left(2 x+\frac{\pi}{4}\right) +1    A)    B)    C)    D)

Correct Answer

verifed

verified

Use reference angles to find the exact value of the expression. Do not use a calculator. - csc2π3\csc \frac { - 2 \pi } { 3 }


A) 233- \frac { 2 \sqrt { 3 } } { 3 }
B) 2- \sqrt { 2 }
C) 3- \sqrt { 3 }
D) 12- \frac { 1 } { 2 }

Correct Answer

verifed

verified

Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.  Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.   - \mathrm { A } = 53.7 ^ { \circ } , \mathrm { C } = 41.7  A)   \mathrm { B } = 36.3 ^ { \circ } , \mathrm { a } = 33.6 , \mathrm {~b} = 24.7  B)   \mathrm { B } = 36.3 ^ { \circ } , \mathrm { a } = 24.7 , \mathrm {~b} = 33.6  C)   \mathrm { B } = 53.7 ^ { \circ } , \mathrm { a } = 33.6 , \mathrm {~b} = 24.7  D)   \mathrm { B } = 53.7 ^ { \circ } , \mathrm { a } = 24.7 , \mathrm {~b} = 33.6 - A=53.7,C=41.7\mathrm { A } = 53.7 ^ { \circ } , \mathrm { C } = 41.7


A) B=36.3,a=33.6, b=24.7\mathrm { B } = 36.3 ^ { \circ } , \mathrm { a } = 33.6 , \mathrm {~b} = 24.7
B) B=36.3,a=24.7, b=33.6\mathrm { B } = 36.3 ^ { \circ } , \mathrm { a } = 24.7 , \mathrm {~b} = 33.6
C) B=53.7,a=33.6, b=24.7\mathrm { B } = 53.7 ^ { \circ } , \mathrm { a } = 33.6 , \mathrm {~b} = 24.7
D) B=53.7,a=24.7, b=33.6\mathrm { B } = 53.7 ^ { \circ } , \mathrm { a } = 24.7 , \mathrm {~b} = 33.6

Correct Answer

verifed

verified

Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.  Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.   -A building 150 feet tall casts a 100 foot long shadow. If a person stands at the end of the shadow and looks up to the top of the building, what is the angle of the person's eyes to the top of the building (to the nearest hundredth of a degree) ? (Assume the person's eyes are 5 feet above ground level.)   A)   55.41 ^ { \circ }  B)   56.31 ^ { \circ }  C)   46.40 ^ { \circ }  D)   43.60 ^ { \circ } -A building 150 feet tall casts a 100 foot long shadow. If a person stands at the end of the shadow and looks up to the top of the building, what is the angle of the person's eyes to the top of the building (to the nearest hundredth of a degree) ? (Assume the person's eyes are 5 feet above ground level.)


A) 55.4155.41 ^ { \circ }
B) 56.3156.31 ^ { \circ }
C) 46.4046.40 ^ { \circ }
D) 43.6043.60 ^ { \circ }

Correct Answer

verifed

verified

Graph the function. - f(x) =4sinx,g(x) =sin2x;h(x) =(f+g) (x) f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)  Graph the function. - f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)     A)    B)    C)    D)


A)
 Graph the function. - f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)     A)    B)    C)    D)
B)
 Graph the function. - f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)     A)    B)    C)    D)
C)
 Graph the function. - f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)     A)    B)    C)    D)
D)
 Graph the function. - f(x) =4 \sin x, g(x) =\sin 2 x ; h(x) =(f+g) (x)     A)    B)    C)    D)

Correct Answer

verifed

verified

θ is an acute angle and sin θ and cos θ are given. Use identities to find the indicated value. - sec250tan250\sec ^ { 2 } 50 ^ { \circ } - \tan ^ { 2 } 50 ^ { \circ }


A) 1
B) 0
C) 0.500.50
D) 0.250.25

Correct Answer

verifed

verified

Graph Variations of y = cot x - y=4cotπ2xy = 4 \cot \frac { \pi } { 2 } x  Graph Variations of y = cot x - y = 4 \cot \frac { \pi } { 2 } x    A)    B)    C)    D)


A)
 Graph Variations of y = cot x - y = 4 \cot \frac { \pi } { 2 } x    A)    B)    C)    D)
B)
 Graph Variations of y = cot x - y = 4 \cot \frac { \pi } { 2 } x    A)    B)    C)    D)
C)
 Graph Variations of y = cot x - y = 4 \cot \frac { \pi } { 2 } x    A)    B)    C)    D)
D)
 Graph Variations of y = cot x - y = 4 \cot \frac { \pi } { 2 } x    A)    B)    C)    D)

Correct Answer

verifed

verified

Use the Pythagorean Theorem to find the length of the missing side.Then find the indicated trigonometric function of the given angle. Give an exact answer with a rational denominator. -Find cotθ\cot \theta .  Use the Pythagorean Theorem to find the length of the missing side.Then find the indicated trigonometric function of the given angle. Give an exact answer with a rational denominator. -Find  \cot \theta .    A)   \frac { 2 } { 5 }  B)   \frac { 2 \sqrt { 29 } } { 29 }  C)   \frac { 5 } { 2 }  D)   \frac { 5 \sqrt { 29 } } { 29 }


A) 25\frac { 2 } { 5 }
B) 22929\frac { 2 \sqrt { 29 } } { 29 }
C) 52\frac { 5 } { 2 }
D) 52929\frac { 5 \sqrt { 29 } } { 29 }

Correct Answer

verifed

verified

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round answer to two decimal places. - r=45\mathrm { r } = 45 inches, θ=35\theta = 35 ^ { \circ }


A) 27.4927.49 inches
B) 29.9229.92 inches
C) 28.7828.78 inches
D) 25.6425.64 inches

Correct Answer

verifed

verified

Find the reference angle for the given angle. - 2727 ^ { \circ }


A) 2727 ^ { \circ }
B) 6363 ^ { \circ }
C) 153153 ^ { \circ }
D) 117117 ^ { \circ }

Correct Answer

verifed

verified

Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.  Solve the right triangle shown in the figure. Round lengths to one decimal place and express angles to the nearest tenth of a degree.   -A radio transmission tower is 230 feet tall. How long should a guy wire be if it is to be attached 9 feet from the top and is to make an angle of 35°  35 ^ { \circ }  with the ground? Give your answer to the nearest tenth of a foot. A)  385.3 feet B)  401.0 feet C)  269.8 feet D)  280.8 feet -A radio transmission tower is 230 feet tall. How long should a guy wire be if it is to be attached 9 feet from the top and is to make an angle of 35° 3535 ^ { \circ } with the ground? Give your answer to the nearest tenth of a foot.


A) 385.3 feet
B) 401.0 feet
C) 269.8 feet
D) 280.8 feet

Correct Answer

verifed

verified

Showing 221 - 240 of 386

Related Exams

Show Answer