Filters
Question type

If 0x2exdx\int_{0}^{\infty} x^{2} e^{-x} d x converges, find its value.Otherwise, enter "DNC".

Correct Answer

verifed

verified

21sinx2dx>3\int_{-2}^{-1} \sin x^{2} d x>3 .

Correct Answer

verifed

verified

7+xxdx=14x+23x32+C\int \frac{7+x}{\sqrt{x}} d x=14 \sqrt{x}+\frac{2}{3} x^{\frac{3}{2}}+C .

Correct Answer

verifed

verified

For any given function, TRAP(n)is always more accurate than LEFT(n).

Correct Answer

verifed

verified

Evaluate the integral a2adx(ax)0.9\int_{a-2}^{a} \frac{d x}{(a-x)^{0.9}} to 3 decimal places, if it converges.If not, enter DNC.

Correct Answer

verifed

verified

Integrate cos23xsin3xdx\int \cos ^{2} 3 x \sin 3 x d x .


A) cos33x9+C\frac{\cos ^{3} 3 x}{9}+C
B) cos33x9+C-\frac{\cos ^{3} 3 x}{9}+C
C) cos33x3+C\frac{\cos ^{3} 3 x}{3}+C
D) cos33x27+C-\frac{\cos ^{3} 3 x}{27}+C

Correct Answer

verifed

verified

7x2+6x2+1dx=7xarctanx+C\int \frac{7 x^{2}+6}{x^{2}+1} d x=7 x-\arctan x+C .

Correct Answer

verifed

verified

The table below shows the velocity v(t) of a falling object at various times (time t measured in seconds, velocity v(t) measured in meters per second) . t012v(t) 172328\begin{array}{cccc}t & 0 & 1 & 2 \\v(t) & 17 & 23 & 28\end{array} The distance the object fell in these three seconds lies within which interval?


A) (68, 75.5)
B) (75.5, 78)
C) (78, 83)
D) (83, 86.5)

Correct Answer

verifed

verified

(x1)exdx=xexex+C\int(x-1) e^{-x} d x=-x e^{-x}-e^{-x}+C .

Correct Answer

verifed

verified

Find 3y(y2+2) 3dy\int 3 y\left(y^{2}+2\right) ^{3} d y


A) 38y(y2+2) 4+C\frac{3}{8 y}\left(y^{2}+2\right) ^{4}+C
B) 3y28(y2+2) 4+C\frac{3 y^{2}}{8}\left(y^{2}+2\right) ^{4}+C
C) 38(y2+2) 4+C\frac{3}{8}\left(y^{2}+2\right) ^{4}+C
D) 34(y2+2) 4+C\frac{3}{4}\left(y^{2}+2\right) ^{4}+C

Correct Answer

verifed

verified

If 081+xdx\int_{0}^{\infty} \frac{8}{\sqrt{1+x}} d x converges, find its value to 3 decimal places.Otherwise, enter "DNC".

Correct Answer

verifed

verified

Evaluate exactly: 0xx2sinxdx\int_{0}^{ x} x^{2} \sin x d x .(Leave π\pi in your answer.)

Correct Answer

verifed

verified

Is the area between y=1x2y=\frac{1}{x^{2}} and y=1x5y=\frac{1}{x^{5}} on (1, \infty )finite or infinite?

Correct Answer

verifed

verified

Use the table of antiderivatives to determine if the following statement is true. e7xcos8xdx=1113e7x(7cos8x+8sin8x)+C\int e^{7 x} \cos 8 x d x=\frac{1}{113} e^{7 x}(7 \cos 8 x+8 \sin 8 x)+C

Correct Answer

verifed

verified

Show 1x2+a2dx=1aarctanxa+C\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \frac{x}{a}+C by integrating the left hand side using the substitution x=atanθx=a \tan \theta .

Correct Answer

verifed

verified

If blured image , then...

View Answer

u1lnudu=(lnu)2+C\int u^{-1} \ln u d u=(\ln u)^{2}+C .

Correct Answer

verifed

verified

(sin32θ+5)cos2θdθ=14sin42θ+52sin2θ+C\int\left(\sin ^{3} 2 \theta+5\right) \cos 2 \theta d \theta=\frac{1}{4} \sin ^{4} 2 \theta+\frac{5}{2} \sin 2 \theta+C .

Correct Answer

verifed

verified

Consider the definite integral 02/514+25x2dx\int_{0}^{2 / 5} \frac{1}{4+25 x^{2}} d x .Compute the integral using the fundamental theorem of calculus and using the midpoint rule with n = 20.How far apart are your answers?


A) Within 0.03 but not within 0.003
B) Within 0.003 but not within 0.0003
C) Within 0.0003 but not within 0.00003
D) Within 0.00003 but not within 0.000003

Correct Answer

verifed

verified

Find 5x4x2dx\int \frac{5 x}{\sqrt{4-x^{2}}} d x


A) 103(4x2) 3/2+C-\frac{10}{3\left(4-x^{2}\right) ^{3 / 2}}+C
B) 103(4x2) 3/2+C\frac{10}{3\left(4-x^{2}\right) ^{3 / 2}}+C
C) 54x2+C5 \sqrt{4-x^{2}}+C
D) 54x2+C-5 \sqrt{4-x^{2}}+C

Correct Answer

verifed

verified

03sin39(x)dx>π\int_{0}^{3} \sin ^{39}(x) d x>\pi .

Correct Answer

verifed

verified

Showing 101 - 120 of 179

Related Exams

Show Answer