Filters
Question type

A point in rectangular coordinates is given.Convert the point to polar coordinates, r > 0. (7,7) ( - 7,7 )


A) Polar coordinates: (7,π4) \left( - \sqrt { 7 } , \frac { \pi } { 4 } \right)
B) Polar coordinates: (98,3π4) \left( \sqrt { 98 } , \frac { 3 \pi } { 4 } \right)
C) Polar coordinates: (98,3π4) \left( \sqrt { 98 } , - \frac { 3 \pi } { 4 } \right)
D) Polar coordinates: (98,3π4) \left( - \sqrt { 98 } , \frac { 3 \pi } { 4 } \right)
E) Polar coordinates: (7,π4) \left( \sqrt { 7 } , \frac { \pi } { 4 } \right)

Correct Answer

verifed

verified

Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. Vertices: (0,±2) ; asymptotes: y = ± 32\frac { 3 } { 2 } x


A) y29+x24=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 4 } = 1
B) y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
C) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = - 1
D) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
E) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1

Correct Answer

verifed

verified

Select the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 22x213x200y112=022 x ^ { 2 } - 13 x - 200 y - 112 = 0


A) Hyperbola
B) Circle
C) Parabola
D) Ellipse
E) None of the above

Correct Answer

verifed

verified

Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids. x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1


A) Center: (0,0) Vertices: (-5,0)  Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids.   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   A) Center: (0,0) Vertices: (-5,0)    B) Center: (0,0) Vertices: (-3,0)    C) Center: (0,0) Vertices: (3,0)    D) Center: (0,0) Vertices: (±5,0)    E) Center: (0,0) Vertices: (±3,0)
B) Center: (0,0) Vertices: (-3,0)  Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids.   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   A) Center: (0,0) Vertices: (-5,0)    B) Center: (0,0) Vertices: (-3,0)    C) Center: (0,0) Vertices: (3,0)    D) Center: (0,0) Vertices: (±5,0)    E) Center: (0,0) Vertices: (±3,0)
C) Center: (0,0) Vertices: (3,0)  Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids.   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   A) Center: (0,0) Vertices: (-5,0)    B) Center: (0,0) Vertices: (-3,0)    C) Center: (0,0) Vertices: (3,0)    D) Center: (0,0) Vertices: (±5,0)    E) Center: (0,0) Vertices: (±3,0)
D) Center: (0,0) Vertices: (±5,0)  Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids.   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   A) Center: (0,0) Vertices: (-5,0)    B) Center: (0,0) Vertices: (-3,0)    C) Center: (0,0) Vertices: (3,0)    D) Center: (0,0) Vertices: (±5,0)    E) Center: (0,0) Vertices: (±3,0)
E) Center: (0,0) Vertices: (±3,0)  Find the center and vertices of the hyperbola and sketch its graph, using asymptotes as sketching aids.   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   A) Center: (0,0) Vertices: (-5,0)    B) Center: (0,0) Vertices: (-3,0)    C) Center: (0,0) Vertices: (3,0)    D) Center: (0,0) Vertices: (±5,0)    E) Center: (0,0) Vertices: (±3,0)

Correct Answer

verifed

verified

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points. r=3π7r = \frac { 3 \pi } { 7 }


A) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = \frac { 3 \pi } { 7 }   A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
B) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = \frac { 3 \pi } { 7 }   A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
C) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = \frac { 3 \pi } { 7 }   A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
D) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = \frac { 3 \pi } { 7 }   A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
E) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = \frac { 3 \pi } { 7 }   A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }

Correct Answer

verifed

verified

Find the vertex and directrix of the parabola. x214x8y+73=0x ^ { 2 } - 14 x - 8 y + 73 = 0


A) vertex: (7,3) ( 7,3 ) directrix: y=5y = 5
B) vertex: (7,3) ( - 7 , - 3 ) directrix: y=5y = 5
C) vertex: (7,3) ( 7,3 ) directrix: y=1y = 1
D) vertex: (7,3) ( - 7 , - 3 ) directrix: y=5y = - 5
E) vertex: (7,3) ( - 7 , - 3 ) directrix: y=9y = 9

Correct Answer

verifed

verified

Find the center and vertices of the hyperbola. 12x24y248x+32y64=012 x ^ { 2 } - 4 y ^ { 2 } - 48 x + 32 y - 64 = 0


A) center: (-2, -4) , vertices: (-2, -6) , (-2, -2)
B) center: (2, 4) , vertices: (2, 2) , (2, 6)
C) center: (2, 4) , vertices: (0, 4) , (4, 4)
D) center: (-2, -4) , vertices: (-4, -4) , (0, -4)
E) center: (-4, -2) , vertices: (-6, -2) , (-2, -2)

Correct Answer

verifed

verified

Select correct graph to graph rotated conic. r=66+sin(θπ/3) r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }


A)  Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 )  }   A)   B)    C)   D)    E)
B)  Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 )  }   A)   B)    C)   D)    E)
C)  Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 )  }   A)   B)    C)   D)    E)
D)  Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 )  }   A)   B)    C)   D)    E)
E)  Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 )  }   A)   B)    C)   D)    E)

Correct Answer

verifed

verified

The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system. θ=30\theta = 30 ^ { \circ } , (2,6) ( 2,6 )


A) (3+3,33+1) ( \sqrt { 3 } + 3,3 \sqrt { 3 } + 1 )
B) (3+3,331) ( \sqrt { 3 } + 3,3 \sqrt { 3 } - 1 )
C) (332,33+12) \left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
D) (33,331) ( \sqrt { 3 } - 3,3 \sqrt { 3 } - 1 )
E) (332,33+32) \left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 3 } { 2 } \right)

Correct Answer

verifed

verified

Use the Quadratic Formula to solve for yy . x212xy10y222=0x ^ { 2 } - 12 x y - 10 y ^ { 2 } - 22 = 0


A) y=12x±144x2+40(x2+22) 20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { - 20 }
B) y=12x±144x2+40(x222) 20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
C) y=12x±144x2+40(x222) 20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { 20 }
D) y=12x±144x+40(x222) 20y = \frac { 12 x \pm \sqrt { 144 x + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
E) y=12x±144x2+40(x2+22) 20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { 20 }

Correct Answer

verifed

verified

Find the vertex and focus of the parabola. y2=17xy ^ { 2 } = - \frac { 1 } { 7 } x


A) vertex: (0,54) \left( 0 , - \frac { 5 } { 4 } \right) focus: (0,128) \left( 0 , - \frac { 1 } { 28 } \right)
B) vertex: (0,54) \left( 0 , \frac { 5 } { 4 } \right) focus: (17,17) \left( - \frac { 1 } { 7 } , - \frac { 1 } { 7 } \right)
C) vertex: (0, 0) focus: (128,0) \left( - \frac { 1 } { 28 } , 0 \right)
D) vertex: (0, 0) focus: (17,0) \left( - \frac { 1 } { 7 } , 0 \right)
E) vertex: (0, 0) focus: (0,17) \left( 0 , - \frac { 1 } { 7 } \right)

Correct Answer

verifed

verified

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x=4cosθy=2sinθ\begin{array} { l } x = 4 \cos \theta \\y = 2 \sin \theta\end{array}


A) x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
C) y=x4y = \frac { x } { 4 }
D) y=x2y = \frac { x } { 2 }
E) x216y24=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1

Correct Answer

verifed

verified

Graph the hyperbola. 9y216x2+36y+64x=1729 y ^ { 2 } - 16 x ^ { 2 } + 36 y + 64 x = 172


A)  Graph the hyperbola.   9 y ^ { 2 } - 16 x ^ { 2 } + 36 y + 64 x = 172   A)    B)    C)    D)
B)  Graph the hyperbola.   9 y ^ { 2 } - 16 x ^ { 2 } + 36 y + 64 x = 172   A)    B)    C)    D)
C)  Graph the hyperbola.   9 y ^ { 2 } - 16 x ^ { 2 } + 36 y + 64 x = 172   A)    B)    C)    D)
D)  Graph the hyperbola.   9 y ^ { 2 } - 16 x ^ { 2 } + 36 y + 64 x = 172   A)    B)    C)    D)

Correct Answer

verifed

verified

Sketch the graph of the ellipse, using the lateral recta. x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1


A)  Sketch the graph of the ellipse, using the lateral recta.   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   A)    B)    C)    D)    E)
B)  Sketch the graph of the ellipse, using the lateral recta.   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   A)    B)    C)    D)    E)
C)  Sketch the graph of the ellipse, using the lateral recta.   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   A)    B)    C)    D)    E)
D)  Sketch the graph of the ellipse, using the lateral recta.   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   A)    B)    C)    D)    E)
E)  Sketch the graph of the ellipse, using the lateral recta.   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   A)    B)    C)    D)    E)

Correct Answer

verifed

verified

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points. r=5cos2θr = 5 \cos 2 \theta


A) Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 5 \cos 2 \theta   A) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
B) Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 5 \cos 2 \theta   A) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
C) Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 5 \cos 2 \theta   A) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
D) Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 5 \cos 2 \theta   A) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
E) Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 5 \cos 2 \theta   A) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E) Symmetric with respect to the polar axis  \begin{array} { c }  | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}

Correct Answer

verifed

verified

Find the angle θ\theta (in radians and degrees) between the lines.Round your answer to four decimal places for radians and round your answer to one decimal places for degree. 12x+6y=183x2y=1\begin{array} { l } 12 x + 6 y = 18 \\3 x - 2 y = - 1\end{array}


A) Θ1.1071 radians 64.4\Theta \approx 1.1071 \text { radians } \approx 64.4 ^ { \circ }
B) θ1.1071 radians 62.4\theta \approx 1.1071 \text { radians } \approx 62.4 ^ { \circ }
C) θ1.1071 radians 65.4\theta \approx 1.1071 \text { radians } \approx 65.4 ^ { \circ }
D) θ1.1071 radians 63.4\theta \approx 1.1071 \text { radians } \approx 63.4 ^ { \circ }
E) θ1.1071 radians 61.4\theta \approx 1.1071 \text { radians } \approx 61.4 ^ { \circ }

Correct Answer

verifed

verified

Find the center, vertices and foci of the hyperbola. x216y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1


A) Center: (0, 0) Vertices: (4,0) ( 4,0 ) Foci: (±41,0) ( \pm \sqrt { 41 } , 0 )
B) Center: (0, 0) Vertices: (4,0) ( - 4,0 ) Foci: (41,0) ( - \sqrt { 41 } , 0 )
C) Center: (0, 0) Vertices: (4,0) ( 4,0 ) Foci: (41,0) ( - \sqrt { 41 } , 0 )
D) Center: (0, 0) Vertices: (4,0) ( 4,0 ) Foci: (41,0) ( \sqrt { 41 } , 0 )
E) Center: (0, 0) Vertices: (±4,0) ( \pm 4,0 ) Foci: (±41,0) ( \pm \sqrt { 41 } , 0 )

Correct Answer

verifed

verified

Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. Vertices: (±4,0) ( \pm 4,0 ) ; foci: (±8,0) ( \pm 8,0 )


A) y248x216=1\frac { y ^ { 2 } } { 48 } - \frac { x ^ { 2 } } { 16 } = 1
B) y216x248=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 48 } = 1
C) x216y248=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 48 } = 1
D) y216+x248=1\frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 48 } = 1
E) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1

Correct Answer

verifed

verified

Find the angle θ\theta (in radians and degrees) between the lines.Round your answer to four decimal places for radians and round your answer to one decimal places for degree. xy=05x4y=3\begin{array} { l } x - y = 0 \\5 x - 4 y = - 3\end{array}  Find the angle  \theta  (in radians and degrees)  between the lines.Round your answer to four decimal places for radians and round your answer to one decimal places for degree.   \begin{array} { l }  x - y = 0 \\ 5 x - 4 y = - 3 \end{array}     A)   \Theta \approx 0.1107 \text { radian } \approx 7.3 ^ { \circ }  B)   \Theta \approx 0.1107 \text { radian } \approx 5.3 ^ { \circ }  C)   \Theta \approx 0.1107 \text { radian } \approx 6.3 ^ { \circ }  D)   \Theta \approx 0.1107 \text { radian } \approx 8.3 ^ { \circ }  E)   \Theta \approx 0.1107 \text { radian } \approx 4.3 ^ { \circ }


A) Θ0.1107 radian 7.3\Theta \approx 0.1107 \text { radian } \approx 7.3 ^ { \circ }
B) Θ0.1107 radian 5.3\Theta \approx 0.1107 \text { radian } \approx 5.3 ^ { \circ }
C) Θ0.1107 radian 6.3\Theta \approx 0.1107 \text { radian } \approx 6.3 ^ { \circ }
D) Θ0.1107 radian 8.3\Theta \approx 0.1107 \text { radian } \approx 8.3 ^ { \circ }
E) Θ0.1107 radian 4.3\Theta \approx 0.1107 \text { radian } \approx 4.3 ^ { \circ }

Correct Answer

verifed

verified

By using a graphing utility select the correct graph of the polar equation.Identify the graph. 32+8sinθ\frac { - 3 } { 2 + 8 \sin \theta }


A)  By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }   A)     e = 4 > 1 \Rightarrow  Hyperbola B)     e = 4 > 1 \Rightarrow  Hyperbola C)     e = 4 > 1 \Rightarrow  Hyperbola D)    e = 4 > 1 \Rightarrow  Hyperbola E)     e = 4 > 1 \Rightarrow  Hyperbola e=4>1e = 4 > 1 \Rightarrow Hyperbola
B)  By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }   A)     e = 4 > 1 \Rightarrow  Hyperbola B)     e = 4 > 1 \Rightarrow  Hyperbola C)     e = 4 > 1 \Rightarrow  Hyperbola D)    e = 4 > 1 \Rightarrow  Hyperbola E)     e = 4 > 1 \Rightarrow  Hyperbola e=4>1e = 4 > 1 \Rightarrow Hyperbola
C)  By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }   A)     e = 4 > 1 \Rightarrow  Hyperbola B)     e = 4 > 1 \Rightarrow  Hyperbola C)     e = 4 > 1 \Rightarrow  Hyperbola D)    e = 4 > 1 \Rightarrow  Hyperbola E)     e = 4 > 1 \Rightarrow  Hyperbola e=4>1e = 4 > 1 \Rightarrow Hyperbola
D)  By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }   A)     e = 4 > 1 \Rightarrow  Hyperbola B)     e = 4 > 1 \Rightarrow  Hyperbola C)     e = 4 > 1 \Rightarrow  Hyperbola D)    e = 4 > 1 \Rightarrow  Hyperbola E)     e = 4 > 1 \Rightarrow  Hyperbola e=4>1e = 4 > 1 \Rightarrow Hyperbola
E)  By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }   A)     e = 4 > 1 \Rightarrow  Hyperbola B)     e = 4 > 1 \Rightarrow  Hyperbola C)     e = 4 > 1 \Rightarrow  Hyperbola D)    e = 4 > 1 \Rightarrow  Hyperbola E)     e = 4 > 1 \Rightarrow  Hyperbola e=4>1e = 4 > 1 \Rightarrow Hyperbola

Correct Answer

verifed

verified

Showing 41 - 60 of 556

Related Exams

Show Answer